Loricariid lips and their correlation with flow and substrate

For the discussion of catfish systematics. Post here to draw our attention to new publications or to discuss existing works.
Post Reply
User avatar
bekateen
Posts: 8994
Joined: 09 Sep 2014, 17:50
I've donated: $40.00!
My articles: 4
My images: 130
My cats species list: 142 (i:102, k:39)
My aquaria list: 36 (i:13)
My BLogs: 44 (i:149, p:2671)
My Wishlist: 35
Spotted: 177
Location 1: USA, California, Stockton
Location 2: USA, California, Stockton
Contact:

Loricariid lips and their correlation with flow and substrate

Post by bekateen »

Noah R. Bressman Jonathan W. Armbruster Nathan K. Lujan Imoh Udoh Miriam A. Ashley‐Ross. (2020). Evolutionary optimization of an anatomical suction cup: Lip collagen content and its correlation with flow and substrate in Neotropical suckermouth catfishes (Loricarioidei). J. Morphology, online 05 May 2020. https://doi.org/10.1002/jmor.21136


https://onlinelibrary.wiley.com/doi/10.1002/jmor.21136
Abstract
In riverine ecosystems, downstream drag caused by fast‐flowing water poses a significant challenge to rheophilic organisms. In neotropical rivers, many members of a diverse radiation of suckermouth catfishes (Loricarioidei) resist drag in part by using modified lips that form an oral suction cup composed of thick flesh. Histological composition and morphology of this cup are interspecifically highly variable. Through an examination of 23 loricarioid species, we determined that the tissue most responsible for lip fleshiness is collagen. We hypothesized that lip collagen content is interspecifically correlated with substrate and flow so that fishes living on rocky substrates in high‐flow environments have the largest, most collagenous lips. By mapping the amount and distribution of lip collagen onto a phylogeny and conducting ANOVA tests, we found support for this hypothesis. Moreover, these traits evolved multiple times in correlation with substrate and flow, suggesting they are an effective means for improving suction‐based attachment. We hypothesize that collagen functions to reinforce oral suction cups, reducing the likelihood of slipping, buckling, and failure under high‐flow, high‐drag conditions. Macroevolutionary patterns among loricarioid catfishes suggest that for maximum performance, biomimetic suction cups should vary in material density according to drag and substrate requirements.
Image
Find me on YouTube and Facebook: http://youtube.com/user/Bekateen1; https://www.facebook.com/Bekateen
Buying caves from https://plecocaves.com? Plecocaves sponsor Bekateen's Fishroom. Use coupon code "bekateen" (no quotes) for 15% off your order.
Post Reply

Return to “Taxonomy & Science News”